

VDBENCH Overview

http://www.oracle.com/technetwork/server-storage/vdbench-downloads-1901681.html

Steven A. Johnson

SNIA Emerald™ Training

SNIA Emerald Power Efficiency Measurement Specification, for use in EPA ENERGY STAR®

July 14-17, 2014

Agenda

- Introduction to VDBENCH iodriver
- Purpose of VDBENCH for EPA program
- Performance 101
 - Overview of things that effect performance
- Overview of VDBENCH scripts format
 - SD, WD and RD parameters
- Detailed discussion of SD, WD, and RD parameters
- Discussion of the output of VDBENCH

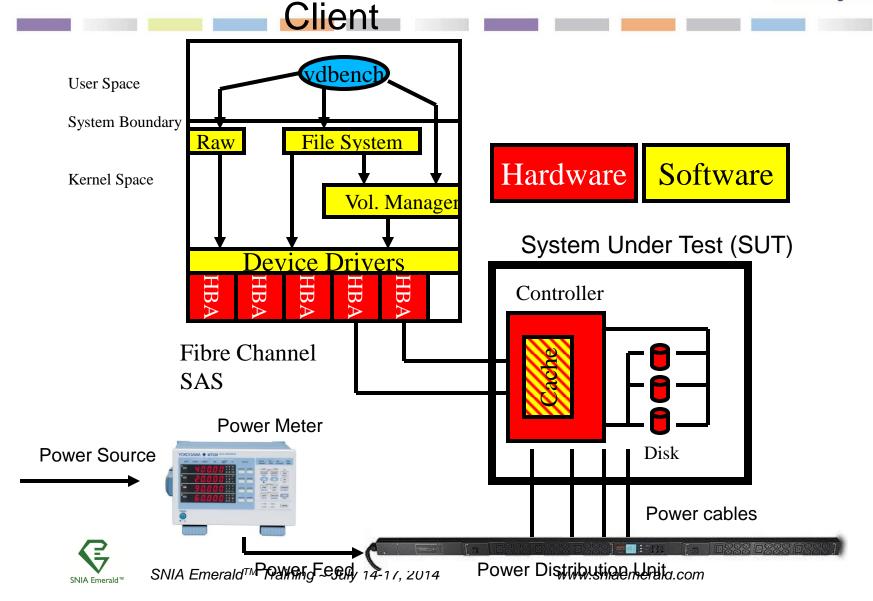
Quick overview of performance terms

- Scale-ability able to increase in throughput or performance with increasing application demands
- Utilization How busy a resource is during a period of time. Generally expressed as a percent from 0 – 100
- Service time Generally the actual time something take for a specific task
- Response time Usually considered Service time plus queueing time for resource
- Latency the period of time one component in a system is waiting for another component
- Data transfer time The latency required to transfer the requested data from a resource
- Queueing The natural process of things lining up to be services
- Queueing Theory The Mathematical study of Queueing systems
- Queue depth Frequently associated with number of outstanding IOs to a Storage System
- Cache Placing frequently used things in an easily accessible place. For computers, placing data in a place that has much faster access time.

Performance terms (cont)

- Cache hit Information the system is looking for is located in high-speed memory
- Cache miss Information was not in high-speed memory and had to be found on a slower device
- Sequential Type of workload that can read or write something one block after another.
- Logically sequential An application may read or write a file from beginning to end
- Physically sequential While while an application may think it is reading physically sequential, generally this is not the case. Dd at the raw level can create physically. Seq workloads
- Random Access pattern moves around a file or physical device
- Locality of Reference Accesses are concentrated in a particular area (i.e. head of indexes of a data base)
- Solid State Disk (SSD) Storage device with no moving parts. A disk drive whose storage capability is provided by solid state storage

Performance terms (cont)



- RAID Redundant Array Independent (Inexpensive) Disks
- RAID 0 No Redundancy maybe striped across many drives (rarely used)
- ♦ RAID 1 Also know as mirroring. Data is mirrored to two drives
- NAID 10 A variation of RAID 1. Will stripe across more than two drives.
- RAID 5 A complex scheme of storing Parity blocks to recreate data if one device fails
- NAID 6 Similar to RAID 5 except there are two parity blocks and can survive a double drive failure. Important to new SATA drive technologies where during the drive rebuild process a second failure is likely.
- Bottleneck a term used to discuss what is holding the system back from performing better. Bottlenecks can be in Processors, HBAs, Controllers or Disk drives.

Overview of components of a storage subsystem

VDBENCH

- An application that simulates a controlled IO load on a storage system
- It is written in 99% Java and 1% C for exceptional efficiency
- Designed to execute a workload on a storage system
- Performance output can be thought of as a simple equation: f(Workload, Config) = Performance + Power

Workload Dimensions

- Workload is a very complex multi-dimensional problem
 - Number of threads or queue depth to storage
 - Transfer size
 - Read to write ratio
 - Sequential vs random
- Cache hit or cache miss

Configuration Dimensions

- Configuration is equally complex multi-dimensional problem
 - Number/type of drives
 - Capacity of configured system
 - Raid Level
 - Size of RAID set
 - Size of Stripe
 - Controller or JBOD
 - Number/type of back-end connections
 - Number/type of front-end connections
 - Volume Manager configuration
 - System parameters that affect storage (sd_max_throttle, max_contig, multipathing software, etc)
 - cache mirroring
 - broken hardware (failed controller, disk drive, path, etc)
 - Accessed RAW or Buffered
 - Tiering software active
- mpression enable / disabled

Performance outputs

- IOs per second for small block workloads
- MB per second for large block workloads
- Average response time in ms
- Combined with the Power Meter
 - Average Watts over the interval
 - Average Amps over the interval
- Generally shows the peak performance of some system resource bottleneck

VDBENCH (cont.)

- VDBENCH is an IO driver that allows for a workload targeted to specific storage and reports performance
 - vdbench has three basic statements to the script
 - SD Storage Definition defines what storage to be used in the run
 - WD Workload Definition Defines the workload parameters for the storage
 - RD Run Definitions determines what storage and workload will be run together and for how long. Causes IO to be executed and report IOPS, Response Times, MB/sec, etc
- Output from vdbench is a web browser friendly .html file.

Simple 3 line VDBENCH Script


```
* Author: Henk Vandenbergh.

* Example 1: Single run, one raw disk

* SD: Storage Definition

* WD: Workload Definition

* RD: Run Definition
```

* Solaris style Raw Disk

```
sd=sd1,lun=/dev/rdsk/c6t0d0s4
wd=rr,sd=sd1,xfersize=4096,rdpct=100
rd=run1,wd=rr,iorate=100,elapsed=10,interval=1
```

* Single raw disk, 100% random read of 4k records at i/o rate * of 100 for 10 seconds

Storage Definitions

- This part of the script defines the storage to be used in this script
- SNIA/EPA workload is designed to run against "RAW" Storage. No buffering.
- Make sure you select the right storage, it will destroy everything on the disk. This includes your root or C: disk.
- Make sd name unique. SD=unique_name

RAW vs Buffered

OS	RAW	Buffered
Windows	lun=\\.\d: lun=\\.\PhysicalDrive4	d:
Solaris	lun=/dev/rdsk/c3t0d2s4 lun=/dev/vx/rdsk/c3t0d2s4	lun=/dev/dsk/c3t0d2s4 lun=/dev/vx/dsk/c3t0d2s4
Linux	lun=/dev/sdb,openflags=o_direct	lun=/dev/sdb
AIX	lun=/dev/rsatathin1	???

sd=default, size=300g

sd=sd1,lun=/dev/rdsk/c6t3d0s0

sd=sd2,lun=/dev/rdsk/c7t1d0s0,size=200g

Workload Definitions

- Each WD name must be unique wd=wd_unique
- Parameters include:
 - sd= devices to run against
 - seekpct= Pct time to move location
 - rdpct= read pct
 - xfersize= transfer size
 - skew= Percent of workload for this definition
 - threads= number of threads this definition
 - wd=default setup defaults for the following wd

 hotband=(10,18) execute hot band workload against a range of storage

Run Definition

- Each run definition name must be unique rd=rd_unique
- Parameters include:
 - wd= which workload definitions to run now
 - iorate= define either io/sec or the keyword "max" or "curve"
 - warmup= define period where ios do not count towards average (30 or 5m or 12h)
 - elapsed= define length of run

- interval= time between reporting statistics in seconds
- threads= number of threads per lun or concatenated storage
- forrdpct= range of pct read to execute

rd=rd1_hband,wd=HOTwd*,iorate=MAX,warmup=30,elapsed=6H,interval=10,pause=30,th=200 rd=rd1_seq,wd=wd_seq,iorate=max,forrdpct=(0,100),xfer=256K,warmup=30,el=20m,in=5,th=20

Performance outputs summary.html


```
Vdbench summary report, created 13:09:26 Mar 13 2013 MST
```

Link to logfile: logfile Run totals: totals Copy of input parameter files: parmfile Copy of parameter scan detail: parmscan Link to errorlog: errorlog flatfile Link to flatfile: Link to HOST reports: localhost Link to response time histogram: histogram Link to SD reports: sd1 sd2 Link to workload report: wd mixed Link to workload report: wd seq

Link to Run Definitions: rdl mixed000 For loops: rdpct=0.0 xfersize=8k threads=48.0

rd1 mixed100 For loops: rdpct=100.0 xfersize=8k threads=128.0

rdl_seq For loops: rdpct=0.0 xfersize=256k threads=48.0

rdl seqR For loops: rdpct=100.0 xfersize=256k threads=128.0

13:09:31.014 Starting RD=rd1_mixed000; I/O rate: 1000; elapsed=1800; For loops: rdpct=0.0 xfersize=8k threads=48.0

Mar 13, 2013	interval	i/o rate	MB/sec 1024**2	bytes i/o	read pct	resp time	read resp	write resp	resp max	resp stddev	queue depth
13:10:31.415	1	991.57	7.75	8192	0.00	1.708	0.000	1.708	23.479	1.093	1.7
13:11:31.294	2	1002.72	7.83	8192	0.00	1.804	0.000	1.804	4.974	0.638	1.8
13:12:31.271	3	994.57	7.77	8192	0.00	1.797	0.000	1.797	4.780	0.634	1.8
13:13:31.290	4	1000.23	7.81	8192	0.00	1.802	0.000	1.802	5.278	0.645	1.8
13:14:31.339	5	1004.10	7.84	8192	0.00	1.805	0.000	1.805	29.753	0.654	1.8
13:15:31.280	6	1002.27	7.83	8192	0.00	1.848	0.000	1.848	46.246	0.682	1.9
•											
•											
13:39:31.214	30	995.17	7.77	8192	0.00	1.800	0.000	1.800	5.211	0.633	1.8
13:39:31.222	avg_2-30	999.11	7.81	8192	0.00	1.816	0.000	1.816	83.487	0.652	1.8

Running vdbench

Parameters to vdbench

- -f file(s) to be part of script
- -o output directory (add a "+" to keep from overwriting earlier runs)
- -e elapsed time override
- -i interval time override
- -w warmup time override
- -s simulate execution (open storage, check syntax)

/vdbench/vdbench -f comp_25.txt t5a_config.txt script.txt -o t5_comp_25+ /vdbench/vdbench -i 10 -f one_file_script.txt -o simple_test+

Steven.A.Johnson@oracle.com

